
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dynamic Modeling

Bernd Bruegge
 Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering 1
Lecture 10

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of the Lecture

• Dynamic modeling
• Sequence diagrams
• State diagrams

• Using dynamic modeling for the design of user
interfaces

• Analysis example
• Requirements analysis model validation

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How do you find classes?

• We have established sources for classes:
• Application domain analysis: We find classes by talking

to the client and identify abstractions by observing the
end user

• General world knowledge and intuition
• Scenarios: Natural language formulation of a concrete

usage of the system
• Use Cases: Natural language formulation of the system

functions
• Textual analysis of problem statement (Abbot)

• Today we identify classes from dynamic models
• Actions and activities in state chart diagrams are

candidates for public operations in classes
• Activity lines in sequence diagrams are candidates for

objects

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dynamic Modeling with UML

• Diagrams for dynamic modeling
• Interaction diagrams describe the dynamic behavior

between objects
• Statechart diagrams describe the dynamic behavior

of a single object

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Interaction Diagram

• Two types of interaction diagram:
• Sequence Diagram:

• Describes the dynamic behavior of several objects
over time

• Good for real-time specifications
• Collaboration Diagram:

• Shows the temporal relationship among objects
• Position of objects is based on the position of the

classes in the UML class diagram.
• Does not show time

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

State Chart Diagram

• State Chart Diagram:
• A state machine that describes the response of an

object of a given class to the receipt of outside stimuli
(Events).

• Activity Diagram:
• A special type of statechart diagram, where all states

are action states (Moore Automaton)

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dynamic Modeling

• Definition of dynamic model:
• Describes the components of the system that have

interesting dynamic behavior.

• The dynamic model is described with
• State diagrams: One state diagram for each class with

important dynamic behavior
• Sequence diagrams: For the interaction between

classes

• Purpose:
• Detect and supply methods for the object model

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How do we detect Methods?

• Purpose:
• Detect and supply methods for the object model

• How do we do this?
• We look for objects, who are interacting and extract

their “protocol”
• We look for objects, who have interesting behavior on

their own
• We start with the flow of events in a use case
• From the flow of events we proceed to the sequence

diagram

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What is an Event?

• Something that happens at a point in time
• An event sends information from one object to

another
• Events can have associations with each other:

• Causally related:
• An event happens always before another event
• An event happens always after another event

• Causally unrelated:
• Events can happen concurrently

• Events can also be grouped in event classes with
a hierarchical structure => Event taxonomy

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The term ‘Event’ is often used in two ways

• Instance of an event class:
• “Slide 10 shown on Tuesday Dec 5 at 10:30”.
• Event class “Lecture Given”, Subclass “Slide Shown”

• Attribute of an event class
• Slide Update(5:30 AM, 12/4/2006)
• Train_Leaves(4:45pm, Manhattan)
• Mouse button down(button#, tablet-location)

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagram

• A sequence diagram is a graphical description of
the objects participating in a use case using a
DAG notation

• Heuristic for finding participating objects:
• A event always has a sender and a receiver.
• Find them for each event => These are the objects

participating in the use case

• Relation to object identification:
• Several objects/classes have already been identified

during object modeling
• New objects are now identified as a result of dynamic

modeling

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

• Flow of events in “Get SeatPosition” use case :

1. Establish connection between smart card and
onboard computer

2. Establish connection between onboard computer and
sensor for seat

3. Get current seat position and store on smart card

• Where are the objects?

An Example

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagram for “Get SeatPosition”
Smart Card Onboard Computer Seat

Establish Connection
Establish Connection

Accept Connection

Accept Connection

Get SeatPosition

“500,575,300”

1. Establish
connection
between smart card
and onboard
computer

2. Establish
connection
between onboard
computer and
sensor for seat

3. Get current seat
position and store
on smart card

time

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Heuristics for Sequence Diagrams

• Creation of objects
• Control objects are created at the initiation of a
use case
• Boundary objects are created by control objects

• Access of objects
• Entity objects are accessed by control and
boundary objects
• Entity objects should never access boundary or
control objects

Layout:
1st column: Should correspond to the actor who
initiated the use case
2nd column: Should be a boundary object
3rd column: Should be the control object that
manages the rest of the use case

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

:Tournament
«new»

ARENA Sequence Diagram: Create Tournament

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)

setMaxPlayers
(maxp)

commit()
createTournament
(name, maxp)

checkMax
Tournament()

create
Tournament
(name, maxp)

:Arena

:League

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Impact on ARENA’s Object Model

• Let’s assume ARENA’s object model contained
the objects

• League Owner, Arena, League, Tournament, Match and
Player

•The Sequence Diagram identified new Classes
• Tournament Boundary, Announce_Tournament_Control

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
Operations

Announce_
Tournament_

Control

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Impact on ARENA’s Object Model (2)

• The sequence diagram supplied many new events
• newTournament(league)
• setName(name)
• setMaxPlayers(max)
• commit
• checkMaxTournament()
• createTournament

• Question:
•Who owns these events?

• Answer:
•For each object that receives an event there is a public
 operation in its associated class.
•The name of the operation is usually the name of the
 event

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example from the Sequence Diagram

createTournament
(name, maxp)

create
Tournament
(name, maxp)

League
Owner

:Tournament
Boundary

newTournament
(league)

:Announce
Tournament

Control
«new»

setName(name)

setMaxPlayers
(maxp)

commit()

checkMax
Tournament()

:Arena

:League

:Tournament
«new»

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
createTournament

(name, maxp)

Announce_
Tournament_

Control

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What else can we get out of Sequence
Diagrams?

• Sequence diagrams are derived from use cases

• The structure of the sequence diagram helps us
to determine how decentralized the system is

• We distinguish two structures for sequence
diagrams

• Fork Diagrams and Stair Diagrams (Ivar Jacobsen)

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Control
Object

Fork Diagram

• The dynamic behavior is placed in a single
object, usually a control object.

• It knows all the other objects and often uses them for
direct questions and commands.

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Stair Diagram

• The dynamic behavior is distributed. Each object
delegates responsibility to other objects.

• Each object knows only a few of the other objects and
knows which objects can help with a specific behavior.

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Fork or Stair?

• Object-oriented supporters claim that the stair
structure is better

• Better heuristics:
• Choose the stair - a decentralized control structure - if

• The operations have a strong connection
• The operations will always be performed in the

same order
• Choose the fork - a centralized control structure - if

• The operations can change order
• New operations are expected to be added as a

result of new requirements

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dynamic Modeling

• We distinguish between two types of operations:
• Activity: Operation that takes time to complete

• associated with states
• Action: Instantaneous operation

• associated with events

• A statechart diagram relates events and states
for one class

• An object model with several classes with
interesting behavior has a set of state diagrams

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML Statechart Diagram Notation

State1 Event(attr) [condition]/action

entry /action
exit/action

• Notation is based on work by Harel
• Added are a few object-oriented modifications

• A UML statechart diagram can be mapped into a
finite state machine

do/Activity

State2

Event parameters

Guard
condition

Action

Event

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a StateChart Diagram

do: test item and compute change

do: make changedo: dispense item

Idle

[item empty] [select(item)]

[change=0] [change>0]

[change<0]

Collect Money
coins_in(amount) / add to balance

coins_in(amount) / set balance

cancel / refund coins

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

State

• An abstraction of the attributes of a class
• State is the aggregation of several attributes a class

• A state is an equivalence class of all those
attribute values and links that do no need to be
distinguished

• Example: State of a bank

• State has duration

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Nested State Diagram

• Activities in states can be composite items that
denote other state diagrams

• A lower-level state diagram corresponds to a
sequence of lower-level states and events that
are invisible in the higher-level diagram.

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Nested Statechart Diagram

do: dispense item

[change=0]

Superstate

Idle
Collect Money

coins_in(amount) / add to balance

do: test item and compute change

do: make change

[change>0]

[item empty] [select(item)] [change<0]

coins_in(amount) / set balance

cancel / refund coins

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Nested Statechart Diagram

do: dispense item

[change=0]

Superstate

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of a Nested Statechart Diagram

do: dispense item

‘Dispense item’ as
an atomic activity:

do: move arm
to row

‘Dispense item’ as
a composite activity:

arm ready

do: move arm
to column

arm ready

do: push item
off shelf

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Expanding activity “do:dispense item”

do: move arm
to row

arm
ready

‘Dispense item’ as
an atomic activity:

‘Dispense item’ as a composite activity:

do: dispense item

[change=0]

arm
ready

do: move arm
to column

do: push item
off shelf

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Superstates

• Sets of substates in a nested state diagram can
be denoted with a superstate

• Superstates:
• Avoid spaghetti models
• Reduce the number of lines in a state diagram

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Modeling Concurrency of Events

Two types of concurrency:
1. System concurrency

• The overall system is modeled as the aggregation of
state diagrams

• Each state diagram is executing concurrently with the
others.

2. Concurrency within an object
• An object can issue concurrent events
• Two problems:

• Show how control is split
• Show how to synchronize when moving to a state

without object concurrency

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of Concurrency within an Object

Setting
Up

Ready
to reset

Emitting

Do: Dispense
 Cash

Do: Eject
 Card

 Cash taken

 Card taken

SynchronizationSplitting control

 Ready

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

State Chart Diagram vs Sequence Diagram

• State chart diagrams help to identify:
• Changes to an individual object over time

• Sequence diagrams help to identify:
• The temporal relationship of between objects over time
• Sequence of operations as a response to one ore more

events

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dynamic Modeling of User Interfaces

• Statechart diagrams can be used for the design
of user interfaces

• States: Name of screens
• Actions or activities are shown as bullets under

the screen name

40© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Navigation Path Example

Diagnostics Menu
•User moves cursor to Control Panel or Graph

Graph
• User selects data group
 and type of graph

Selection
• User selects data group

• Field site
• Car
• Sensor group
• Time range

Control panel
• User selects functionality of sensors

Disable
• User can disable a
 sensor event from
 a list of sensor events

Define
• User defines a sensor event
 from a list of events

Enable
• User can enable
 a sensor event
 from a list of
 sensor events

Screen name

Action or
Activity

41© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Practical Tips for Dynamic Modeling

• Construct dynamic models only for classes with
significant dynamic behavior

• Avoid “analysis paralysis”

• Consider only relevant attributes
• Use abstraction if necessary

• Look at the granularity of the application when
deciding on actions and activities

• Reduce notational clutter
• Try to put actions into superstate boxes (look for

identical actions on events leading to the same state)

42© 2006 Bernd Bruegge Software Engineering WS 2006/2007

1. What are the transformations?
Create scenarios and use case diagrams

- Talk to client, observe, get historical records

2. What is the structure of the system?
Create class diagrams

- Identify objects.
- What are the associations between them?
- What is their multiplicity?
- What are the attributes of the objects?
- What operations are defined on the objects?

3. What is its behavior?
Create sequence diagrams

- Identify senders and receivers
- Show sequence of events exchanged between objects.
- Identify event dependencies and event concurrency.

Create state diagrams
- Only for the dynamically interesting objects.

Summary: Requirements Analysis

Dynamic Modeling

Functional Modeling

Object Modeling

43© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Let’s Do Analysis

• Analyze the problem statement
• Identify functional requirements
• Identify nonfunctional requirements
• Identify constraints (pseudo requirements)

• Build the functional model:
• Develop use cases to illustrate functional requirements

• Build the dynamic model:
• Develop sequence diagrams to illustrate the interaction

between objects
• Develop state diagrams for objects with interesting

behavior

• Build the object model:
• Develop class diagrams for the structure of the system

44© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Problem Statement:
Direction Control for a Toy Car

• Power is turned on
• Car moves forward and

car headlight shines

• Power is turned off
• Car stops and headlight

goes out.

• Power is turned on
• Headlight shines

• Power is turned off
• Headlight goes out

• Power is turned on
• Car runs backward with

its headlight shining

• Power is turned off
• Car stops and headlight

goes out
• Power is turned on

• Headlight shines
• Power is turned off

• Headlight goes out
• Power is turned on

• Car runs forward with its
headlight shining

45© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Find the Functional Model: Use Cases

• Use case 1: System Initialization
• Entry condition: Power is off, car is not moving
• Flow of events:

1. Driver turns power on
• Exit condition: Car moves forward, headlight is on

• Use case 2: Turn headlight off
• Entry condition: Car moves forward with headlights on
• Flow of events:

1. Driver turns power off, car stops and headlight goes out.
2. Driver turns power on, headlight shines and car does not

move.
3. Driver turns power off, headlight goes out

• Exit condition: Car does not move, headlight is out

46© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Use Cases continued
• Use case 3: Move car backward

• Entry condition: Car is stationary, headlights off
• Flow of events:

1. Driver turns power on
• Exit condition: Car moves backward, headlight on

• Use case 4: Stop backward moving car
• Entry condition: Car moves backward, headlights on
• Flow of events:

1. Driver turns power off, car stops, headlight goes out.
2. Power is turned on, headlight shines and car does not

move.
3. Power is turned off, headlight goes out.

• Exit condition: Car does not move, headlight is out

47© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Use Cases Continued

• Use case 5: Move car forward
• Entry condition: Car does not move, headlight is out
• Flow of events

1. Driver turns power on
• Exit condition:

• Car runs forward with its headlight shining

48© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Use Case Pruning

• Do we need use case 5?
• Let us compare use case 1 and use case 5:

Use case 1: System Initialization
• Entry condition: Power is off, car is not moving
• Flow of events:

1. Driver turns power on
• Exit condition: Car moves forward, headlight is on

Use case 5: Move car forward
• Entry condition: Car does not move, headlight is out
• Flow of events

1. Driver turns power on
• Exit condition:

• Car runs forward with its headlight shining

49© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dynamic Modeling:
Create the Sequence Diagram

• Name: Drive Car
• Sequence of events:

• Billy turns power on
• Headlight goes on
• Wheels starts moving forward
• Wheels keeps moving forward
• Billy turns power off
• Headlight goes off
• Wheels stops moving
• . . .

50© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sequence Diagram for Drive Car Scenario

:Headlight Billy:Driver :Wheel

Power(on) Power(on)

Power(off) Power(off)

Power(on) Power(on)

51© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Toy Car: Dynamic Model
Wheel

Forward

Stationary

power
on

Stationary

power
off

Backward

power
off

power
on

Headlight

Off

On

poweron
power

off

52© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Toy Car: Object Model

Car

Wheel

Motion: (Forward,

 Stationary)
 Backward,

Start_Moving()
Stop_Moving()

Headlight

Status: (On, Off)

Switch_On()
Switch_Off()

 Power

Status: (On, Off)

TurnOn()
TurnOff()

53© 2006 Bernd Bruegge Software Engineering WS 2006/2007

When is a Model Dominant?

• Object model:
• The system has classes with nontrivial states and many

relationships between the classes

• Dynamic model:
• The model has many different types of events: Input,

output, exceptions, errors, etc.

• Functional model:
• The model performs complicated transformations (eg.

computations consisting of many steps).

• Which model is dominant in these applications?
• Compiler
• Database system
• Spreadsheet program

54© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Dominance of Models

• Compiler:
• The functional model most important.
• The dynamic model is trivial because there is only one

type input and only a few outputs.

• Database systems:
• The object model most important.
• The functional model is trivial, because the purpose of

the functions is to store, organize and retrieve data.

• Spreadsheet program:
• The functional model most important.
• The dynamic model is interesting if the program allows

computations on a cell.
• The object model is trivial.

55© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of the Lecture

Dynamic modeling
Sequence diagrams
State diagrams

Using dynamic modeling for the design of user
interfaces

Analysis example
Requirements analysis model validation

56© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Verification vs Validation of models

fM

fR

MM

R R
I I

VerificationVerificationVerificationValidation

fMS

MSystem

MSystem

System
Design

fMD

MObject

MObject

Object
Design

MImpl

MImpl

fImpl

Implemen-
tation

fR

R

R

fMA

MAnalysis

MAnalysis

Analysis

57© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Verification and Validation

• Verification is an equivalence check
between the transformation of two models:

• Validation is the comparison of the model
with reality

• Validation is a critical step in the development
process Requirements should be validated with
the client and the user.

• Techniques: Formal and informal reviews
(Meetings, requirements review)

• Requirements validation involves several
checks

• Correctness, Completeness, Ambiguity, Realistism

58© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Checklist for a Requirements Review

• Is the model correct?
• A model is correct if it represents the client’s view of

the the system

• Is the model complete?
• Every scenario is described

• Is the model consistent?
• The model does not have components that contradict

each other

• Is the model unambiguous?
• The model describes one system, not many

• Is the model realistic?
• The model can be implemented

59© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Checklist for the Requirements Review (2)

• Syntactical check of the models
• Check for consistent naming of classes, attributes,

methods in different subsystems
• Identify dangling associations (“pointing to nowhere”)
• Identify double- defined classes
• Identify missing classes (mentioned in one model but

not defined anywhere)
• Check for classes with the same name but different

meanings

60© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Examples for syntactical Problems

• Different spellings in different UML diagrams

• Omissions in diagrams

61© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Attributes
makeTournament

(name, maxp)

Announce_
Tournament_

Control

Different spellings in different UML diagrams

UML Sequence Diagram UML Class Diagram

createTournament
(name, maxp)

Different spellings
in different models

for the same operation

62© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Omissions in some UML Diagrams

Attributes
Operations

League

Attributes
Operations

Tournament

Attributes
Operations

Player

Attributes
Operations

Match

Attributes
Operations

League Owner 1 *

* *

Attributes
Operations

Tournament_
Boundary

Class Diagram

Missing
Association

(Incomplete
Analysis?)

Missing class
(The control object

Announce_Tournament
is mentioned in the
sequence diagram)

63© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Requirements Analysis Document Template
1. Introduction
2. Current system
3. Proposed system

3.1 Overview
3.2 Functional requirements
3.3 Nonfunctional requirements
3.4 Constraints (“Pseudo requirements”)
3.5 System models

3.5.1 Scenarios
3.5.2 Use case model
3.5.3 Object model
 3.5.3.1 Data dictionary
 3.5.3.2 Class diagrams
3.5.4 Dynamic models
3.5.5 User interfae

4. Glossary

64© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Section 3.5 System Model

3.5.1 Scenarios
 - As-is scenarios, visionary scenarios

3.5.2 Use case model
- Actors and use cases

3.5.3 Object model
- Data dictionary
- Class diagrams (classes, associations, attributes and

operations)

3.5.4 Dynamic model
- State diagrams for classes with significant dynamic

behavior
- Sequence diagrams for collaborating objects (protocol)

3.5.5 User Interface
- Navigational Paths, Screen mockups

65© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• In this lecture, we reviewed the construction of
the dynamic model from use case and object
models. In particular, we described:

• Sequence and statechart diagrams for
identifying new classes and operations.

• In addition, we described the requirements
analysis document and its components

66© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Backup slides

67© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Is this a good Sequence Diagram?

Smart Card Onboard Computer Seat

Establish Connection
Establish Connection

Accept Connection

Accept Connection

Get SeatPosition

“500,575,300”

